Guidelines and Recommendations
don
Training Needs Analysis
GR 1002
TABLE OF CONTENTS

Table of Contents.. 2

1 DOCUMENT DESCRIPTION.. 3
 1.1 Purpose: .. 3
 1.2 Revision Record... 3

2. INTRODUCTION... 4
 2.1 Abbreviations... 4
 2.2 Objectives.. 4
 2.3 Scope.. 4
 2.4 List of definitions ... 4

3. SPECIFICATIONS... 6
 3.1 Introduction... 6
 3.2 Being competent... 6
 3.3 People involved in TNA performance... 6
 3.4 TNA Procedure... 6
 3.5 Explanation of the different phases of the TNA procedure.. 8
 3.5.1 Analyzing phase 1.. 8
 3.5.2 Analyzing phase 2.. 10
 3.5.3 Course production phase... 11
 Example terminal, standard enabling and customized enabling objectives level 1........................ 12
 Example terminal, standard enabling and customized enabling objectives level 2 12
1 DOCUMENT DESCRIPTION

1.1 Purpose:

The purpose of this document is to provide guidance and recommendations for a Training Needs Analysis (TNA) method for aircraft maintenance training. The guidelines may be used by maintenance training organisations and to communicate best practice.

1.2 Revision Record

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17-07-09</td>
<td>New Document</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. INTRODUCTION

2.1 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/C</td>
<td>Aircraft</td>
</tr>
<tr>
<td>AMM</td>
<td>Aircraft Maintenance Manual</td>
</tr>
<tr>
<td>ATA</td>
<td>Air Transport Association</td>
</tr>
<tr>
<td>EAMTC</td>
<td>European Aviation Maintenance Training Committee</td>
</tr>
<tr>
<td>GA</td>
<td>General Assembly of the EAMTC</td>
</tr>
<tr>
<td>KSA</td>
<td>Knowledge, Skills, Attitude</td>
</tr>
<tr>
<td>MMEL/CDL</td>
<td>Master Minimum Equipment/List configuration Deviation List</td>
</tr>
<tr>
<td>MRO</td>
<td>Maintenance, Repair & Overhaul</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>TNA</td>
<td>Training Needs Analyses</td>
</tr>
<tr>
<td>WG</td>
<td>Working Group</td>
</tr>
</tbody>
</table>

2.2 Objectives

The objectives of this document are to give the:

- Definition of TNA
- Best Practices for TNA

2.3 Scope

The target areas and focus of this document include:

- TNA for Part 21
- TNA for EASA Part 147 Maintenance Training Organizations

2.4 List of definitions

Training Needs Analysis (TNA): is the analysis of the target group against the competence definitions of their job to determine the precise objectives (knowledge, skills, attitudes) to be trained in order to carry out that job.

Task: a task is an action designed to contribute to a specified end result. It has an identifiable beginning and end and is a measurable component of the duties and responsibilities of a specific job.

Competencies: are general descriptions of the abilities needed to perform aircraft maintenance. Competencies are described in terms such that they can be measured.

There are three important factors that have an influence on a person's competency, that is to say:

1. Knowledge
2. Skills
3. Attitude (or motivation)

Task family/families: is/are the page blocks as defined in the ATA 100

Item: an item may be an aircraft or a component. This can be a system, sub-system, sub-sub system, LRU or component.
Mode of delivery: the way you deliver the course. This document only defines high-level modes such as: Self Paced (SP), Instructor Led (IL), Training Device (TD) or Aircraft (A/C). This document does not cover any detailed level or EASA Part 66 Level training methods except for the purpose of giving examples.

Training breakdown: the training objectives ordered per module/lesson

Performance objective: what the trainee will be able to do as a result of completing the planned instruction. This is the final result of the course and linked to practical performance like servicing, removal, installation, troubleshooting etc.

Terminal objective: what the trainee is able to do at the end of a topic/unit.

Enabling objective: the skills, knowledge and attitudes the trainee needs to reach one terminal objective.
3. SPECIFICATIONS

3.1 Introduction
Training should be designed so that it enables all qualified trainees to perform their tasks at acceptable levels of competence. Job analyses can define those levels. It is important that the focus of training courses is towards enabling employees to competently perform tasks and not only learn about or understand the subject matter. The purpose of TNA is to gather information, per item/system, on how, where and with what information a job is done in order to define the knowledge and skills required to perform the job. This knowledge and skills will be translated into training objectives.

3.2 Being competent
You cannot train the trainee to perform all the tasks but you can train the competencies they need to perform tasks in general. To make sure the trainee can perform those tasks on a certain A/C types you need to analyze what they need to know or understand in order to be able to perform the job. The defined competencies are:

Environment awareness
- Act safely according to the environment and prevent dangerous situations

Take system interaction into account
- Demonstrate understanding of aircraft systems interaction

Using reports and indications
- Read and interpret indications and reports

Aircraft documentation detection
- Identify the appropriate aircraft documentation

Aircraft documentation handling
- Carry out the prescribed procedures during task performance

Perform maintenance action
- Demonstrate safe aircraft system handling

Perform aircraft final close-up
- Apply close-up procedure

Report
- Fill in and sign maintenance records/logbook

3.3 People involved in TNA performance
Usually, the TNA will be performed by instructors (indicated as Subject Matter Experts) with the involvement of engineering department personnel, certifying staff, safety department staff etc under the supervision of a TNA expert.

3.4 TNA Procedure
See Figure 1
Select the A/C type

List the ATA Chapters belonging to the type

List the other items that are part of the (Sub) ATA chapters

List of items to be analysed

Select the A/C type

List the ATA Chapters belonging to the type

List the sub-ATA's belonging to the ATA Chapters

Select the other items that are part of the (Sub) ATA chapters

List of items to be analysed

Interim result

List of terminal objectives & standard enabling objectives per level 1, 2, 3

Tasks / task families listed by levels (2 and 3)

Select the tasks or TASK FAMILIES belonging to the different levels

Select the other items that are part of the (Sub) ATA chapters

Define per level the terminal objectives including its standard enabling objectives

Select the items that have differences in between types

List of items to be analysed

Select the needed terminal objectives by studying the tasks/ task families, requirements and feedback per item of the selected A/C type

Select the items that have differences in between types

List of terminal objectives & standard enabling objectives per level 1, 2, 3

Select the tasks or TASK FAMILIES belonging to the different levels

Select the other items that are part of the (Sub) ATA chapters

List of items to be analysed

Interim result

Intermediate result

Select the training modes & methods to reach practical and theoretical objectives including the examination & assessment method

Devolve the course materials including examination & assessment

Define the training breakdown and evaluate the needed time based on the selected training modes & methods

Determine the practical tasks needed to reach the practical enabling objectives for this item

Customize the standard enabling objectives (that are linked to the selected terminal objectives) with details that have to be known or practiced per item (de-standardization)

Select the items that have differences in between types

List of terminal objectives & standard enabling objectives per level 1, 2, 3

Tasks / task families listed by levels (2 and 3)

Select the other items that are part of the (Sub) ATA chapters

List of items to be analysed

Interim result

Intermediate result

Course syllabus

TNA result

Analysing phase 1

Analysing Phase 2

course production Phase

Interim result

Intermediate result

Course syllabus

TNA result
3.5 Explanation of the different phases of the TNA procedure

To define a TNA you will find relevant questions/steps including examples in this chapter of the document.

3.5.1 Analyzing phase 1

During the first analyzing phase you will have to define the aircraft type and all the items and the high level objectives (performance and terminal) that are important for the trainee.

Step 1

Selection of Aircraft type
Which Aircraft type are we going to analyze?

Step 2

List of ATA’s
What are the ATA’s that belong to this A/C type?

Step 3 & 4

Selection of sub-systems
What are the sub-systems that belong to the ATA chapter of this A/C?

Step 4

Selection of Items
Which items do I want to analyze?
Define a way to select the items. It is most likely that you do not need to analyze each part number of the aircraft. The items that you are processing in the TNA have to be items that bring an expected added value to the course. E.g. you can analyse all items until the fourth digit of the ATA chapter (XX-XX) or you can use weight criteria to select items. (Examples of weight criteria could be specific tooling, unfamiliar maintenance actions or items, time limitations, handling etc)
Step 5

Objectives
In order to define objectives you will have to analyze the kind of work to be performed on the selected items. To help with this you may use the task families of the A/C.

The general task families defined are (ATA page blocks): -
 Maintenance Practices
 Servicing
 Deactivation / Reactivation
 Removal & Installation
 Adjustment / Testing
 Inspection / Check
 Clean / Paint
 Approved repair

In addition to the ATA page blocks you may also consider MMEL/CDL consequences on maintenance. Troubleshooting can be considered as a selection of several tasks/AMM procedures in a specific order.

Note: It is not necessary to analyze all tasks but you need to select tasks that bring expected added value. This means that you can apply some general criteria (e.g. frequency according to maintenance planning documents) to select tasks per task family per license category (apply a filter).

Performance objective
The task families as described above are a direct link to the job of the ground engineer. They directly reflect the performance objective(s) of the course and are in line with each EASA License category (A, B1 or B2).

E.g. Performance objective level 2: After this training the student will be able to perform the following ramp & transit activities according to correct procedures: MAINTENANCE PRACTICES/ CLEAN/ SERVICE/ INSPECTION & CHECK/ DE-REACTIVATE, REMOVE & INSTALL and TEST the system

The result of the TNA should be a list with objectives (knowledge & skills) needed to reach the performance objective.

Definition of terminal objectives
In order to make sure that the trainee is able to reach the performance objectives you have to define the terminal objectives of the training. A terminal objective describes what the trainee is able to do at the end of a topic/unit. The terminal objectives are standard defined objectives per level of training. These may be the objectives of the relevant Appendix of EASA Part 66 or they may be objectives that you have defined. If you have defined them, they must be in line with the relevant Appendix of EASA Part 66.

This standard set of objectives is based on an assumption of prior knowledge/skills. This means that in the scope of type training the starting point of the TNA should be:

- For standard courses → EASA Part 66 Basic Knowledge & Skills

1 Category C is not mentioned as this category does not include practical performance for Part 147
Definition of enabling objectives
As terminal objectives are of a general type you have to specify them with enabling objectives. Enabling objectives describe the specific skills, knowledge and attitudes the trainee needs to reach the terminal objective. This means that each terminal objective consists of a number of standard (not customized) defined enabling objectives.

Example of a Terminal Objective including its linked Standard Enabling Objectives:
18. Give an overview of the system
 • Name the system with its sub-systems
 • Describe simply the main function(s) of the system
 • Describe the novelties and benefits if any.

Note: For the level 1 (EASA License Category C) there are no performance objectives. A general ‘rule’ to define the terminal and enabling objectives is to analyze the systems limited to the first 3 (or 4) digits of the ATA 100 numbering. The terminal objectives would look like the following example.
After the training the trainee will be able to:
 • Give an overview of the system
 • Give a functional description of the system
 • Describe simply the design principle of the system
 • Describe simply the system general layout including general locations
 • List the special tools
 • List the precautions belonging to the system

3.5.2 Analyzing phase 2
During this phase you are going to apply the knowledge you have of the aircraft type in relation to the different jobs by selecting which terminal objectives are necessary to cover the knowledge and skills necessary.

Step 6
Selection of job type
Are you designing training for EASA License Category C, A², B1 or B2?
To select your training objectives you first have to know what the job of the trainee will be. Each category has its own task families and training objectives.
Step 7

Selection of terminal objectives

Per item you have to select which terminal objectives are applicable. Terminal objectives have standard enabling objectives linked to them. It is important that you select the terminal objectives in the light of the job that has to be performed in relation with the aircraft type. A task-by-task analysis is not necessary. The analysis should be done in such a manner that the necessary knowledge and skills to perform the job are part of the type training objectives/course. In other words, the training should reflect that even though a system might be complicated, the maintenance could be simple or vice versa. The relationship between the nature and scope of the maintenance to be performed must be kept. E.g. the flight management system is a complex system but the maintenance that has to be performed on it is limited. Windows is a simple ATA chapter but the maintenance that has to be performed on them can be complex.

As mentioned above, a task analysis is not necessarily required for all tasks. It can be required, however, for critical tasks. The criticality of tasks can be determined through the importance, difficulty and frequency of the task. The tasks that are found critical should be emphasized during training. All relevant information is required for them.

- **Importance**: can be determined by asking the question: How serious are the consequences if the tasks are performed incorrectly?
- **Difficulty**: can be determined by asking the question: Is there a difficulty with regards to access, safety, skill, tooling etc while performing this task?
- **Frequency**: can be described through the specification of a mean time between the execution of the scheduled task

To do a Training Needs Analyses for new Aircraft the OEM (Original Equipment Manufacturer) may use documents such as Maintenance Tasks Analyses done by the engineering department. For existing Aircraft the AMM may be used.

3.5.3 Course production phase

During the course production phase you are going to customize all the enabling objectives with the help of the aircraft description documents. If you have defined all the enabling objectives you can define the delivery modes, methods, training time and finally develop all materials.

Step 8 & 9

Customization of standard enabling objectives

In order to have customized type training you will have to customize the standard enabling objectives that are linked to the selected terminal objectives (see example). To do this you need to comprehend what the job comprises (EASA Category C, A, B1, B2 Licenses) (see step 6) in relation to the type of aircraft. You also need to know the requirements of, for example, the regulatory authorities, your company etc. and you need to use feedback from customers.

Note: in some cases for some items some enabling objectives might not be applicable.
Example terminal, standard enabling and customized enabling objectives level 1

<table>
<thead>
<tr>
<th>The trainee is able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal objective</td>
</tr>
<tr>
<td>• Give an overview of the system</td>
</tr>
<tr>
<td>Standard enabling objectives</td>
</tr>
<tr>
<td>1) Name the system with its sub-systems.</td>
</tr>
<tr>
<td>2) Describe simply the main function(s) of the system</td>
</tr>
<tr>
<td>Customized enabling objectives</td>
</tr>
<tr>
<td>3) Name the IMA with its sub-systems.</td>
</tr>
<tr>
<td>4) Describe simply the main function(s) of IMA</td>
</tr>
<tr>
<td>5) Describe the benefits of the IMA</td>
</tr>
<tr>
<td>Customized enabling objectives with associated key points</td>
</tr>
<tr>
<td>6) Name the IMA with its sub-systems.</td>
</tr>
<tr>
<td>• IMA = Integrated Modular Avionics</td>
</tr>
<tr>
<td>• IMA Sub systems = Shared Avionics Resources, Communication Network, Remote Shared Resources</td>
</tr>
<tr>
<td>7) Describe simply the main function(s) of IMA</td>
</tr>
<tr>
<td>• Function = provide common or shared resources for computing and data communication</td>
</tr>
</tbody>
</table>

Example terminal, standard enabling and customized enabling objectives level 2

<table>
<thead>
<tr>
<th>The trainee is able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal objective</td>
</tr>
<tr>
<td>1. Give a functional description of the system</td>
</tr>
<tr>
<td>Standard enabling objectives</td>
</tr>
<tr>
<td>1. Describe the main function(s) of the system</td>
</tr>
<tr>
<td>2. Name the system’s main components / LRU’s (if any) concerned by the inspection/ check</td>
</tr>
<tr>
<td>Customized enabling objectives</td>
</tr>
<tr>
<td>a. Describe the function of the APU exhaust</td>
</tr>
<tr>
<td>b. Name the APU exhaust main component</td>
</tr>
<tr>
<td>Customized enabling objectives with associated key points</td>
</tr>
<tr>
<td>c. Describe the function of the exhaust</td>
</tr>
<tr>
<td>• Function = to direct/release the Auxiliary Power Unit (APU) exhaust gas and decrease noise</td>
</tr>
<tr>
<td>d. Name the APU exhaust main component</td>
</tr>
<tr>
<td>• Main component = Exhaust duct</td>
</tr>
<tr>
<td>The trainee is able to:</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Terminal objective</td>
</tr>
<tr>
<td>Standard enabling objectives</td>
</tr>
<tr>
<td>Customized enabling objectives</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Customized enabling objectives with associated key points</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Guidelines for Selection of Practical tasks

You can choose practical task objectives by:

- Task selection as a result of a specific skill that needs to be trained according to the TNA (practical enabling objectives)
- Using daily, weekly checklists for selection of level 2 tasks
- Using critical tasks based on the frequency, difficulty and complexity
- Using ‘newness’ of tasks

Competencies

During the selection of objectives you have to make sure that all the competencies are covered. Analyzing the ATA per item and task family will cover the needed technical knowledge and skills to fulfill the competencies noted in paragraph 3.2.

However, the following competencies will have to be analyzed separately:

- **Aircraft documentation detection**
 Identify the appropriate aircraft documentation

And

- **Aircraft documentation handling**
 Execute the prescribed procedures during task performance

To be able to practice these two competencies you will have to develop some theory training with some exercises that involve the trainee in working with the documentation. Only then you can start the practical task training.
EAMTC GUIDELINES AND RECOMMENDATIONS

SAMPLE OF THE TNA OUTCOME FOR THEORY OBJECTIVES

<table>
<thead>
<tr>
<th>Performance objective</th>
<th>Terminal theory objectives ATA 49 ITEM 16 (air intake)</th>
<th>Standard Enabling objectives</th>
<th>Customized enabling objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVL II</td>
<td>(Review per task family. An accumulation of the needed knowledge/understanding per task family will be the outcome of the needed content for the ATA)</td>
<td>(Specify what it exactly is that the trainee is able to do, which items he is able to name, until which detail is he describing the function, what safety precautions is he able to state etc.)</td>
<td>(For course development give the input for the standard enabling objective)</td>
</tr>
<tr>
<td>DE- & REACTIVATION according to correct procedures</td>
<td>The trainee is able to:</td>
<td>In order to achieve the terminal objective the trainee is able to:</td>
<td>Describe the main function(s) of air intake system</td>
</tr>
<tr>
<td></td>
<td>Give a functional description (Concerned by specific task family)</td>
<td>• Describe the main function(s) of the system/subsystem/sub subsystem concerned by the deactivation/reactivation task</td>
<td>• Name the air intake system main components/LRU’s concerned by the deactivation/reactivation task</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Name the (system/subsystem/sub subsystem)’s main components/LRUs concerned by the deactivation/reactivation task</td>
<td>• Describe the main function(s) of the component(s)/LRUs that allow(s) to deactivate/reactivate the related system/subsystem/sub subsystem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Describe the main function(s) of the deactivated/reactivated system/subsystem/sub subsystem/ components/LRUs if it is necessary</td>
<td>• Name the main component/LRUs/application used for the deactivation/reactivation task only if it helps to understand the deactivation/reactivation procedure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Describe the main function(s) of the component(s)/LRUs that allow(s) to deactivate/reactivate the related system/subsystem/sub subsystem</td>
<td>• Describe if there are different deactivation possibilities on this system/subsystem/sub subsystem/ components/LRUs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Name the main component/LRUs/application used for the deactivation/reactivation task only if it helps to understand the deactivation/reactivation procedure</td>
<td>• Describe if there are different deactivation possibilities on this system/subsystem/sub subsystem/ components/LRUs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Describe the consequences of the action(s) of deactivation/reactivation on this system/subsystem/sub subsystem/ components/LRUs</td>
<td>• Describe the consequences of the action(s) of deactivation/reactivation of this air intake system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Name the system/subsystem/sub subsystem/ components/LRUs that do not need to be/cannot be deactivated/reactivated (due to a new design) and explain briefly why.</td>
<td>• Describe the consequences of the action(s) of deactivation/reactivation of the air intake system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>State the location</td>
<td>➢ Locate in its environment and/or identify on aircraft the deactivated/reactivated system/subsystem/sub subsystem/components/LRUs.</td>
<td>➢ Locate in its environment and identify on aircraft the deactivated/reactivated air intake flap and actuator.</td>
<td>➢ Locate and identify on aircraft the means/mechanism used for deactivation/ reactivation.</td>
</tr>
<tr>
<td></td>
<td>➢ Locate and/or identify on aircraft the means/mechanism used for deactivation/ reactivation.</td>
<td>➢ Locate and identify on aircraft the means/mechanism used for deactivation/ reactivation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➢ Locate and/or identify on aircraft the inspection(s) points required by Deactivation/ Reactivation tasks.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Describe the interfaces</td>
<td>❖ Name the power sources and (if any) explain briefly the conditions/logics to perform the deactivation/ reactivation of the system/subsystem/sub subsystem/components/LRUs.</td>
<td>❖ Name the power sources and explain briefly the conditions/logics to perform the deactivation/ reactivation of the air intake flap.</td>
<td></td>
</tr>
<tr>
<td>Describe the controls and indications</td>
<td>❖ Locate, Identify and/or use the control(s) / indication(s) of the system/subsystem/sub subsystem/ components/LRUs linked to the Deactivation/ Reactivation.</td>
<td>❖ Locate and use the indication(s) of the air inlet flap linked to the Deactivation/ Reactivation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>❖ Locate, Identify and/or use the indication(s) of the system/subsystem/sub subsystem/ components/LRUs linked to the verifications required by Deactivation/ Reactivation tasks.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE OF THE TNA OUTCOME FOR PRACTICAL OBJECTIVES

Note: If there is need for practical skill training you have to customize the practical enabling objectives linked to the selected terminal objectives (e.g. use the indication of the air intake system to perform the APU starting). (see table below). This will help you to select the practical tasks that have to be trained.
Step 10

Delivery mode & method

The training objectives obtained by the TNA will be linked to a (minimum) mode of delivery

- For the theory training this means that for groups of objectives you have to define if the training can be delivered Self Paced (SP), Instructor Led (IL), with a Training Device (TD) or on the Aircraft (AC)
- For the practical training this means that per task it will be defined if the task can be trained with the use of tools/ manuals, on a Training Device (TD) or on an Aircraft (A/C)

When you have defined the mode of delivery you also have to define the specific training method within this mode. E.g. tell, show, practice, problem solving, facilitation.

Note: Be aware that the training mode and method strongly depends on the type of objective. The objective describes the required action from the trainee after the training.

Step 11

Delivery time

Define the training breakdown and evaluate the needed time based on the different modes of delivery together with details on the training method and the examination and assessment methods. It may arise that you need more or less time to train an objective from one mode (including the teaching method) to another.

Step 12

Development

This includes the development of the training material and examination and assessment material. The examination will be prepared in accordance with the learning objectives to the required level and number of questions for the examination. The assessment will be prepared in accordance with the defined competencies.